Streaming
curl -N -X POST https://api.moondream.ai/v1/query \
-H 'Content-Type: application/json' \
-H 'X-Moondream-Auth: YOUR_API_KEY' \
-d '{
"image_url": "",
"question": "What is in this image?",
"stream": true
}'
data: {"text": "The"}
data: {"text": " image"}
▊Streaming lets you receive AI responses as they're being generated, word-by-word, instead of waiting for the complete answer. This creates a more responsive experience for your users. Streaming is available for the query, caption, and segment skills.
Using with the SDK
- Python
- Node.js
View Python SDK Documentation →
Query
import moondream as md
from PIL import Image
# Initialize with your API key
model = md.vl(api_key="YOUR_API_KEY")
# Load an image
image = Image.open("path/to/image.jpg")
# Stream a query response
for chunk in model.query(image, question="What is in this image?", stream=True)["answer"]:
print(chunk, end="", flush=True)
Caption
import moondream as md
from PIL import Image
# Initialize with your API key
model = md.vl(api_key="YOUR_API_KEY")
# Load an image
image = Image.open("path/to/image.jpg")
# Stream a caption
for chunk in model.caption(image, stream=True)["caption"]:
print(chunk, end="", flush=True)
View Node.js SDK Documentation →
Query
import { vl } from 'moondream';
import fs from 'fs';
// Initialize with your API key
const model = new vl({ apiKey: 'YOUR_API_KEY' });
// Load an image
const image = fs.readFileSync('path/to/image.jpg');
// Stream a query response
const stream = await model.query({
image: image,
question: 'What is in this image?',
stream: true
});
for await (const chunk of stream.answer) {
process.stdout.write(chunk);
}
Caption
import { vl } from 'moondream';
import fs from 'fs';
// Initialize with your API key
const model = new vl({ apiKey: 'YOUR_API_KEY' });
// Load an image
const image = fs.readFileSync('path/to/image.jpg');
// Stream a caption
const stream = await model.caption({
image: image,
length: 'normal',
stream: true
});
for await (const chunk of stream.caption) {
process.stdout.write(chunk);
}
Segment
Segment streaming returns the bounding box immediately, followed by coarse path chunks, and finally the refined path:
- Python
- Node.js
import moondream as md
from PIL import Image
model = md.vl(api_key="YOUR_API_KEY")
image = Image.open("path/to/image.jpg")
# Stream segmentation updates
for update in model.segment(image, "cat", stream=True):
if "bbox" in update and not update.get("completed"):
print(f"Bbox: {update['bbox']}") # Available immediately
if "chunk" in update:
print(update["chunk"], end="") # Coarse path chunks
if update.get("completed"):
print(f"\nFinal path: {update['path']}")
import { vl } from 'moondream';
import fs from 'fs';
const model = new vl({ apiKey: 'YOUR_API_KEY' });
const image = fs.readFileSync('path/to/image.jpg');
const stream = await model.segment({
image: image,
object: 'cat',
stream: true
});
for await (const update of stream) {
if (update.bbox && !update.completed) {
console.log('Bbox:', update.bbox);
}
if (update.chunk) {
process.stdout.write(update.chunk);
}
if (update.completed) {
console.log('\nFinal path:', update.path);
}
}